
N91-24047

SOFTWARE REENGINEERING

Ernest M. Fridge III
Software Technology Branch/PT4

NASA/Johnson Space Center
Houston, Texas 77058

(713) 483-8109
Nasamail: EFRIDGE

INTRODUCTION

Programs in use today generally have all of the functional and information processing capabilities required
to do their specified job. However, older programs usually use obsolete technology, are not integrated
properly with other programs, and are difficult to maintain. Reengineering is becoming a prominent
discipline as organizations try to move their systems to more modern and maintainable technologies.
Johnson Space Center's (JSC) Software Technology Branch (STB) is researching and developing a system
to support reengineering older FORTRAN programs into more maintainable forms that can also be more
readily translated to a modern language such as FORTRAN 8x, Ada, or C. This activity has led to the
development of maintenance strategies for design recovery and reengineering. These strategies include a set
of standards, methodologies, and the concepts for a software environment to support design recovery and
reengineering.

This document provides a brief description of the problem being addressed and the approach that is being
taken by the STB toward providing an economic solution to the problem. A statement of the maintenance
problems,the benefits and drawbacks of three alternative solutions, and a brief history of the STB's
experience in software reengineering are followed by the STB's new FORTRAN standards, methodology,
and the concepts for a software environment.

STATEMENT OF THE PROBLEM

Based on trends in the computer industry over the last few years, it is clear that computer hardware,
languages, and procedures are not static. The software industry recognizes that a large existing software
base must be dealt with as new software engineering concepts and software technologies emerge. The old
systems use outdated technology and are costly to maintain. At JSC, as in industry at large, there is a large
investment in existing FORTRAN software. These FORTRAN systems do not consistently use modern
software practices that can increase maintainability. Yet these systems must be maintained for perhaps the
next 20 years. Management is seeking ways to reduce maintenance costs.

In the 1960s-70s many FORTRAN programs were developed at JSC, each with its own sizeable software
development team, and its own input/output format. These programs could not communicate readily and
eventually were "wired" together in a very crude semblance of integration. Standards could not be enforced
because FORTRAN did not enforce them and some were not visible by just looking at the code. The
problem was aggravated by the lack of training of new developers plus a 50 percent turnover in the very
large development staff every two years. In addition, the user organizations had more people doing
development than the development group, and these other organizations were not always aware of the
standards and support tools available. This history has left JSC with the following problems:

Many programs are large and difficult to understand, resulting in maintenance problems.

The problems in maintenance led to users keeping their own versions of programs, resulting in
tremendous duplication.

Many of the FORTRAN programs have already been converted from their original dialect of FORTRAN to
the FORTRAN 77 standard. Additional conversions will periodically be required even if only to new
FORTRAN standards. It is necessary to consider the question, where will that code have to be in five or ten
years? Three possible answers come to mind:

47



FORTRAN 77 is the current standard, but the next FORTRAN standard, FORTRAN 8x, is close
to release. As vendors stop supporting FORTRAN 77, existing FORTRAN will have to move to
the new standard or to another language.

- Much of the code may move to the Ada language. This will be particularly true on Space Station
Freedom work.

- With C being the language of choice for Unix, some of the code might move to the C language.

ALTERNATIVE SOLUTIONS

Three alternative solutions to the problems identified above have been identified: complete redevelopment
of the program, code translation to a more modern language or version of a language, and reengineering.
Each of these is illustrated in figure 1 and discussed briefly in the following paragraphs.

Redevelopment of a system from scratch is very expensive. Redevelopment includes all of the same phases
of the life cycle as new development, from requirements through integratio_tesfing. Extensive domain
analysis is required, and there is a risk of incomplete requirements. All too often it is reported that a large
program will be redeveloped from scratch to a more modern style only to find out that the new developers
did not understand all of the functions and necessary information requirements of the existing system.

Code translation, especially automatic code translation, costs much less. Some might then ask, why worry
about all of this now? We can use a translator when the time comes that we are forced to move the code for-

Figure 1. Alternative Solutions

ward. Although this would be a nice solution, the truth is that code translators have proven unsuccessful
due to several major reasons:

Poor existing control flow is translated into poor control flow.

Poor existing data structures remain poor data structures.

48



- Input/output translation usually produces hard to read "unnatural"code in the new language.

- Translation does not take advantage of the code and data packaging techniques available in the
newer languages. Attempts to automatically translate some FORTRAN programs to Ada have
failed.

Reengineering is the combination of "reverse engineering" a working software system and then "forward
engineering" a new system based on the results of the reverse engineering. Forward engineering is the
standard process of generating software from "scratch." It is composed of the life cycle phases such as
requirements, architectural design, detailed design, code development, testing, etc. In each phase, certain
products are required and the activities which produce them are defined. Each product is required to be
complete and consistent. To progress forward to a new phase normally requires a new representation of the
products which involve more detail such as new derived requirements, design decisions, trade off evaluation
between alternative approaches, etc. Finally, code is developed which is the most complete, consistent, and
detailed representation of the requiredproduct.

Reverse engineering is the reverse of forward engineering. It is the process of starting with existing code
and going backward through the software development life cycle. Life cycle products are, therefore, obtained
by abstracting from more detailed representations to more abstract ones. This process should proceed much
faster than forward engineering since all of the details required are available. Reverse engineering starts with
the most detailed representation, which has also proven to be complete and consistent since it can currently
do the job required. Developing products in reverse involves abstracting out only the essential information
and hiding the non-essential details at each reverse step.

How far to go backward in the reverse engineering process before it is stopped and forward engineering
begins is a critical question and involves trade offs. It is important to understand all of what the program
does, all of the information it handles, and the control flow since these are probably required to get the job
done. This implies taking the reverse process far enough to understand what the "as is" program is. This is
usually more significant than how the program does its job since the how is usually the part that will be
changed in any following forward engineering process.

What a program does is called its requirements. How it meets those requirements is its design. For a
reverse engineered program it is the design that will be updated more often than what the program will do.
Modern software engineering techniques and technologies such as user interfaces, database management,
memory utilization, data structuring, packages, objects, etc. will affect the design, not what the program
does. Therefore, once it is understood what the program does and what is obsolete, then the forward

engineering process can begin with confidence.

Reverse engineering is referred to as "design recovery" when the reverse engineering process stops at the
recovery of the design of the implementation, rather than proceeding on to a higher level of abstraction to
include the recovery of the requirements. The basic process of this level of design recovery involves
recovery of information about the code modules and the data structures in an existing program. This
information will support the programmer/analyst who is maintaining an unfamiliar large FORTRAN
program, upgrading it for maintainability, or converting it to another target language.

However, a better job of redesigning a program can be accomplished with requirements recovery than with
design recovery. To carry the reverse engineering process beyond design recovery to requirements recovery
is difficult and requires higher levels of domain knowledge to do the abstractions. The whys of the
requirements, design, and implementation can only be provided by someone very familiar with the program
and the domain. This level of expertise is often very difficult to find and have dedicated to the reengineering
process. For this reason, the methods and tools that the STB has developed initially assume reverse
engineering only to the design recovery stage. Future development will be based on feedback from the JSC
software engineering community. The current standards, methods, tools, and environment are all designed
to be sufficiently flexible and extendible to enable the strategies to be extended to cover the full spectrum of
reverse engineering.

The overriding philosophy of this planned reverse engineering process is to capture the total software
implementation in an electronic form. This includes source code, documentation, databases, etc. Figure 2

49



illustratestheprogression of data structures from COMGEN-compatible code (see section 4.0) to
re,engineered code. This progression in electronic form ensures that the total consistent and complete
requirements representation is available. Software tools are provided to support the generation of the more
abstract products required for engineering in reverse as well as capturing rationale and decisions of the
engineer. By the continuing process of abstracting the information about the program into the different
representations, the engineer can remain more confident that information is not being lost or inadvertently
"falling through the cracks."

Figure 2. Data Structure Progression

SOFTWARE TECHNOLOGY BRANCH'S REENGINEERING HISTORY

In the early 1970's, the Mission Planning and Analysis Division's (MPAD) Software Development Branch
and TRW/Houston developed a tool, called COMGEN, that began as a COMMON block specification
statement generator. It grew to include many other functions as new techniques were developed. Later
COMGEN was broken up into a continually evolving set of tools with common data interface structures.
This tool set supports the maintenance of FORTRAN programs today on Unisys and multiple Unix
systems. People still refer to this tool set as COMGEN tools, and a program that complies with the
MPAD standard COMMON concept as a COMGEN-compatible program. [1,2,3]

In the 1970's, MPAD performed a lot of software reengineering to meet the goal of combining many of the
independently developed engineering programs, each with its own input/output formats. Many of the
modem concepts such as separation of input/output processing from the applications, databases, data
structures, packages, generics, objects, etc. were recognized and simulated to some degree. They were not
called by the modem names, of course, but the design engineers were trying to do good engineering,
modularization, and data handling. Even though these techniques were known in the 1970's, they are just
now really becoming popular because of newer technologies such as database management systems, user
interface tools sets, and modem languages that actually embed and enforce good software engineering
practices.

Inthe iate 1980's, some of the personnel and the functions Of the Software Development Branch were
reorganized into the newly created STB_ the Software Technology Branch. The STB's reengineering history
has put JSC in a better position with respect to the maintainability of its older software than many other
organizations. The positive results of this experience include the following:

5O



- Most of the software is reasonably modular.

The data has some structure.

Most of the software at JSC is reasonably compatible with the STB's tools, including the in-line
documentation.

The large complex programs that support many simulations have considerable software reuse and
information sharing.

MAINTENANCE STRATEGIES

The strategies presented in this document are intended to help with design recovery in support of
programmer/analysts who are required to maintain large FORTRAN programs that they did not develop. In
addition, these strategies are intended to support reengineering of existing FORTRAN code into modern

software engineering structures, which are then easier to maintain and which allow a fairly straight forward
translation into other target languages. The STB is proposing standards, methods, and an integrated
software environment based upon the significant set of tools built to develop and maintain FORTRAN code

for the Space Shuttle. [4,5,6,7,8] The environment will support these structures and practices even in areas
where the language definition and compilers do not enforce good software engineering practices.

New FORTRAN Standards

New standards, which allow modem software engineering constructs to be used in FORTRAN 77, have

been defined by the STB. [5] These standards are added to existing standards defined by the former MPAD
and still in use in the mission planning and analysis domain. The goal of the new standards is to improve

maintainability and permit relatively automated translations to newer languages. In table 1, the standards
and their benefits are summarized. These standards address documentation, longer variable names, modern
control flow structures, grouping subprograms together as virtual packages, data structuring, and

input/output encapsulation in separate subprograms. Where FORTRAN 77 does not provide the constructs,
virtual constructs are provided along with a tool environment to support their development and
maintenance. The existing core of FORTRAN programmers should have little problem with the standards
and new FORTRAN code should adhere to them from the start.

Table 1. Standards Summary

Standard

Documentation
Header statement before codeblocks

Requirements in CD1 statements
Rationale in CD7 statements

Virtual package identification

Longer_ more meaningful variable names
Modem control flow structures

Block DO
DO WHILE

Grouping subprograms into virtual packages

Data structuring
Preferred use of calling parameters
Controlled use of COMMON blocks

Preferably encapsulate input/output in
separate subprograms

Benefit

Understandability
Understandability and traceability
Design knowledge capture
Maintenance

Understandability
Maintenance and understandability

Higher level of abstraction) understandability

Maintenance
Maintenance
INCLUDE

COMMON database concept

Maintenance and support to future
conversions

51



Design Recovery and Reengineering Methodology

The reengineering methodology defines the steps, the skills required, and guidelines on how far to reverse
engineer before deciding to rebuild. The key goal is to update to modern technology and software
engineering concepts without losing required functions and data. Methods are provided that have the
flexibility to meet multiple levels of conversion, each of which improves maintainability. Figure 3
illustrates five methods. [6] Method 1 converts an arbitraryFORTRAN program to COMGEN-compatible
FORTRAN, which provides in-line documentation, data structure, and unique data names within a
COMMON structure. Method 2 converts software already in this format to the new "standard" FORTRAN
with a more Ada-like structure that is ready for a mostly automated translation by Method 3 to a target
language that embeds software engineering principles. Alternatively, COMGEN-compatible programs can
be converted directly to a target language like Ada by Method 4. Although it is e,__ie_rtp conyert a
FORTRAN program when the code already meets the standard COMMON concept, commonly known as
COMGEN-compatible, arbitrary FORTRAN can be directly converted to a target language by Method 5.

Figure 3. Reengineering Methods

Environment to Support Design Recovery and Reengineering

The STB's reengineering environment [7] will be built around three components: standards, methods,_and
tools that support the standards and the methods. It will contain modified versions of the tools used to
support the current JSC FORTRAN programs plus commercial off-the-shelf (COTS) tools and additional
custom-built tools. The intent is to get an environment out into use in JSC's maintenance community to
provide support for upgrading FORTRAN programs in terms of maintainability in the near-term, then to
extend the functionality of the tool set and environment in response to feedback from the programmers/
analysts. Later versions of the environment may have extensions to handle subject programs written in C,
Ada, or even HAL/S, according to requests from the user community.

The environment will be designed with stable interfaces defined to provide for the maximum degree of
seamlessness that is desirable. It is doubtful that COTS tools can be integrated seamlessly into the
environment as-nostandard interfaces have yet been established for either user interface or data interface (as

opposed to data exchange). The tools will be integrated at the front end by a user interface and behind the

52



screenby two logical databases, one containing data passed to and from the tools and the other containing
the original and modified source code as shown in figure 4.

Figure 4. Conceptual Architecture of the Design Recovery and Reengineering Environment

The environment will not be a completely automated environment since much work will still have to be
done by a programmer/analyst. A person must be in the loop to provide the required puzzle-solving skills
that are beyond the capabilities of state-of-the-practice tools. However, as an experience base is accrued in
design recovery and reengineering, knowledge-based capabilities can be added to the environmenL

CONCLUSIONS

JSC has a large amount of exsting code in FORTRAN that embodies domain knowledge and required
functionality. This code must be maintained and eventually translated to more modern languages. Three
primary alternative solutions have been identified to address the maintenance problems of these old
FORTRAN programs: complete redevelopment of the programs, code translation to a more modern
language or version of a language, and reengineering. Complete redevelopment is effective but very costly.
Simple code translation is cheap, but usually ineffective since seldom do the old systems incorporate
modern software engineering concepts such as good data structuring, good control structuring, packages,
objects, etc., that should be present in the new system. Modern languages such as Ada have constructs for
representing these features, but translators cannot determine these features in the original code to map them
into the new system. Reengineering is being recognized as a viable option because the old systems, in
spite of obsolete technology, do contain all of the required functionality and can get the job done. However,
at the present time there are only a few expensive Computer Aided Software Engineering (CASE) tools and
no total system environment available in the COTS market to support reengineering FORTRAN programs.

The STB maintenance strategies provide standards, methods, and a tool environment for upgrading current
FORTRAN systems without losing the embedded engineering knowledge and at a lower cost than for
complete redevelopment of the program. A useful environment for reengineering FORTRAN software can
be built fairly quickly by building upon the existing FORTRAN development and maintenance tools,
COTS products, new software and hardware technologies, plus current research into reuse, design recovery,
and reengineering. This environment will support reengineering existing FORTRAN code into more
maintainable forms that can also be readily translated into a modern language including newer versions of
FORTRAN.

53



GLOSSARY

arbitraryFORTRAN FORTRAN program that is not compatible with the COMGEN standards long
in place for JSC's mission planning and analysis domain.

COMGEN-compatible

COTS

FORTRAN program that is compatible with the COMGEN standards long in
place for JSC's mission planning and analysis domain. [1]

Commercial-Off-The-Shelf

design recovery

environment

framework

FORTRAN 77

Reverse engineering, the first step for maintenance or reengineering.

Instantiation of a framework, i.e., an integrated collection of tools. It may
support one or more methodologies and may also provide a framework for third
party tools.

Software system to integrate both the data and the control of new and existing
tools; usual components include a user interface, object management system, and
a tool set.

ANSI standards for FORTRAN in effect in June 1990.

FORTRAN 8x Future ANSI standards for FORTRAN; expected to be approved and released
soon; draft standards have been circulated; unofficially called FORTRAN 90.

forward engineering

package

Process of developing software from "scratch," through the phases of
requirements, design, and coding.

"A collection of logically related entities or computational resources" (Booch[9]).

reengineering

reverse engineering

software maintenance

subject program

virtual package

"The examination and alteration of a subject system to reconstitute it in a new
form and the subsequent implementation of the new form" (Chikofsky and Cross
[10]); combination of reverse engineering and forward engineering.

"The process of analyzing a subject system to identify the system's components
and their interrelationships and create representations of the system in another
form or at a higher level of abstraction" (Chikofsky and Cross [10]); the first
step of maintenance or reengineering; reverse of forward engineering; process of
starting with existing code and going backward through the software
development life cycle.

Process of modifying existing operational software while leaving its primary
functions intact (Boehm [11]).

Program that is being maintained or reengineered.

Package concept as defined by Booch [9], but implemented either in Ada, which
enforces the concept, or in a language in which the concept mustbe supported
procedurally.

REFERENCES

[11

[2]

Braley, Dennis: Computer Program Development and Maintenance Techniques. NASA IN 80-FM-55,
NASA Johnson Space Center (Houston, TX), November ]980.

Braley, Dennis: Automated Software Documentation Techniques. NASA Johnson Space Center
(Houston, TX), April 1986.

54



[3] Braley, Dennis: Software Development and Maintenance Aids Catalog. NASA IN 86-FM-27, NASA
Johnson Space Center (Houston, TX), October 1986.

Fridge III, Ernest: Maintenance Strategies for Design Recovery and Reengineering: Executive
Summary and Problem Statement. Volume 1. NASA Johnson Space Center (Houston, TX), June
1990.

[5] Braley, Dennis: Maintenance Strategies for Design Recovery and Reengineering: FORTRAN
Standards. Volume 2. NASA Johnson Space Center (Houston, TX), June 1990.

[6] Braley, Dennis; and Plumb, Allan: Maintenance Strategies for Design Recovery and Reengineering:
Methods. Volume 3. NASA Johnson Space Center (Houston, TX), June 1990.

[7] Braley, Dennis; and Plumb, Allan: Maintenance Strategies for Design Recovery and Reengineering:
Concepts for an Environment. Volume 4. NASA Johnson Space Center (Houston, TX), June 1990.

[8] George, Vivian; and Plumb, Allan: A Method for Conversion of FORTRAN Programs. Barrios
Technology, Inc. (Houston, TX), March 1990.

[9] Booch, G.: Software Engineering with Ada. Benjamin/Cummings Publishing Co., Inc. (Menlo Park,
CA), 1983.

[10] Chikofsky, E. J.; and Cross II, J. H.: "Reverse Engineering and Design Recovery: A Taxonomy."
IEEE Software, January 1990.

[11] Boehm, B. W.: Software Engineering Economics. Prentice-Hall (Englewood Cliffs, NJ), 1981.

55


